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The mechanism of transition in the wake of a thin flat
plate placed parallel to a uniform flow

By HIROSHI SATO anp KYOICHI KURIKI

Aeronautical Research Institute, University of Tokyo, Japan
(Received 10 February 1961)

A study was made of the laminar-turbulent transition of a wake behind a thin
flat plate which was placed parallel to a uniform flow at subsonic speeds.
Experimental results on the nature of the velocity fluctuations have made it
possible to classify the transition region into three subregions: the linear region,
the non-linear region and the three-dimensional region.

In the linear region there is found a sinusoidal velocity fluctuation which is
antisymmetrical with respect to the centre-line of the wake. The frequency of
fluctuation is proportional to the § power of the free-stream velocity, and the
amplitude increases exponentially in the direction of flow. The behaviour of
small disturbances in the linear region was investigated in detail by inducing
velocity fluctuation with an external excitation—actually sound from a loud-
speaker. Solutions of the equation of a small disturbance superposed on the
laminar flow were obtained numerically and compared with the experimental
results. The agreement between the two was satisfactory.

When the amplitude of fluctuation exceeds a certain value, the growth rate
deviates from being exponential due to non-linear effects. Although velocity
fluctuations in the non-linear region are still sinusoidal and two-dimensional, the
experimental results on the distributions of amplitude and phase indicate that
the flow pattern may be described by the model of a double row of vortices.
This configuration lasts until three-dimensional distortion takes place in the
final subregion, the three-dimensional region, in which the fluctuation loses
regularity and gradually develops into turbulence without being accompanied
by abrupt breakdown or turbulent bursts.

1. Introduction

The laminar-turbulent transition of boundary layers is a well-known pheno-
menon which has been investigated theoretically and experimentally since the
beginning of this century. The detailed process of transition, however, still
remains unclarified. In the initial period of investigation, interest lay mainly in
determining the transition Reynolds number, which was important from the
practical viewpoint. Modern developments in experimental techniques of flow
measurement have made it possible to make detailed observations of velocity
fluctuations in the boundary layer. Thus, investigations in the last decade have -
been focused on the understanding of the mechanism of transition. Recent
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experimental results have indicated that two typical patterns of velocity
fluctuation are essential in the transition. One is the regular sinusoidal fluctuation
of small amplitude, and the other is the instantaneous turbulent burst of
much higher intensity.

Sinusoidal fluctuations were first discovered experimentally by Schubauer &
Skramstad (1948) in the boundary layer along a flat plate. They obtained good
agreement between their results and the linearized stability theory which had been
developed by Tollmien, Schlichting and others. Since then, extended studies
have been made on the properties of sinusoidal fluctuations both experimentally
and theoretically. Sinusoidal velocity fluctuations have been found in various
flow fields at subsonic and supersonic speeds, and agreement between linearized
theory and the experimental results is satisfactory (Sato 1959a, b; Laufer &
Vrebalovich 1960). It is now well established that the behaviour of fluctuations
of small amplitude in the boundary layer is described by the linearized theory.
On the other hand, our knowledge on the turbulent burst is poor. Experimental
results obtained by various investigators sometimes show disagreements, and
no concrete conclusions have been obtained on the origin and the law of develop-
ment of a burst. Moreover, in the transition region of free boundary layers, no
bursts have been observed so far (Sato 19594, b). In order to obtain a full under-
standing of the detailed mechanism of transition, more extensive studies are
wanted.

The present investigation has been undertaken with the intention of clarifying
the process of transition in wakes. A thin flat plate was placed in a uniform flow
with zero angle of attack so as to produce a simple, well-defined wake. 1t is
obvious that the wake of a cylinder is inadequate for detailed studies of transi-
tion since the flow field behind a cylinder is much too complicated owing
to boundary-layer separation and rolling up of vortices in the wake. The
velocity profile of a laminar wake was calculated by Goldstein (1933), and
stability caleulations based on the Orr—Sommerfeld equation were carried out by
Hollingdale (1940) and McKoen (1956) in the case of large Reynolds number.
It was Hollingdale (1940) who made the first systematic observation of velocity
fluctuations in the wake of a flat plate by taking pictures in a water tank.
Taneda (1958) has extended these observations to a wider range of Reynolds
number with an improved experimental arrangement. He has found sinusoidal
velocity fluctuations whose frequency is proportional to § power of the flow
speed. The present work was started in order to make a more detailed survey of
velocity fluctuations in wakes, using modern techniques of hot-wire anemo-
metry in a low-turbulence wind-tunnel. The first part of this paper gives a
general view of the transition phenomenon. The second part deals with the
sinusoidal velocity fluctuations, and the third and fourth parts are devoted to
clarifying the role of non-linear effects and three-dimensional distortion in the
process of development into turbulence.
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2. Experimental arrangement

The experiment was conducted in a 60 x 60 cm low-turbulence wind-tunnel
which was newly constructed at the Aeronautical Research Institute. The
tunnel is of non-return type with the test-section downstream of the fan. The
contraction ratio, i.e. the ratio of cross-sectional area of the settling chamber to
that of the test-section, is 16:1. Eleven damping screens were installed in the
settling chamber. These arrangements, incorporated with a proper design of air-
intake, fan and diffuser, diminished the turbulence level at the test-section
to 0-059%, at a flow velocity of 10 m/sec. Background noise and mechanical
vibrations were carefully reduced by suitable construction, since they have a
great influence on the transition process. The wind speed at the test-section was
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Ficure 1. Layout of test-section.

variable from 1 to 30 m/sec. The general layout of the test-section is shown
in figure 1, in which X is the distance downstream from the trailing edge of the
plate, Y is measured perpendicular to the plate, and Z is the spanwise distance
from the central point of the trailing edge.

The side walls of the test-section were made of aluminum plates which were
adjusted in order to keep the streamwise static-pressure distribution constant.
One of the side walls had slits parallel and normal to the flow which allowed the
insertion and traversing of hot-wire anemometers and pressure probes in the
X-, Y- and Z-directions.

The two-dimensional wake was realized behind a thin flat plate which was
spanned vertically along the centre-line of the wind-tunnel. The parallel align-
ment between the plate and the direction of flow was accomplished by measuring
the mean-velocity distribution at the trailing edge of the plate. Three kinds of
flat plate were used in order to clarify the effect of the thickness of the plate,
as well as the sharpness of trailing edge, on the transition process. Dimensions
of these plates are summarized in table 1.

The chord and span of all plates were 30 and 60 cm, respectively. Plate I was
made of aluminium, carefully machined into a thin airfoil over the whole length
and polished to a mirror-like surface. Plate II was a thin brass foil without
machining. Plate III was made of aluminium and was sharpened at the leading
edge, with the remaining part kept at the same thickness until the square
trailing edge. The Reynolds number based on the length of plate ranged from
6x10* to 4 x 105,
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For the measurement of the mean-velocity distribution, both fine Pitot tubes
and hot-wire anemometers were used, although the measurements by Pitot
tubes formed a very small part of the present experiment. For the hot-wire
anemometers, use was made of 10 %, rhodium-platinum wire, 5 4 in diameter
and about 2mm in length. For the measurement of the w-component of
velocity, the hot-wire was rotated around the axis of support.

Thickness
Maximum Thickness at the
thickness ratio trailing edge
(mm) (%) (mm)
Plate I 3 1 0-1
Plate 11 0-3 0-1 0-3
Plate 111 3 1 3

TaBLE 1. Dimensions of plate.

The mean velocity and the root-mean-square of the fluctuating velocity were
measured by conventional hot-wire equipment which has been previously
reported (Sato, Kobashi, Tuchi, Yamamoto & Onda 1954). The spectral distri-
bution of the velocity fluctuation was observed by a band-pass filter. The mean-
cube of the fluctuation was measured by a newly constructed unit in which the
cubic curve was approximated by the superposition of the plate currents of ten
triodes which were properly biased and loaded. A mean-square output meter
was constructed on the same principle. This type of circuit had the advantages
of higher input impedance and lower power consumption compared with similar
circuits constructed by diodes. The fluctuation patterns were observed and
recorded by a dual-beam cathode-ray oscilloscope.

The anemometers were traversed in the X-, Y- and Z-directions. The X- and
Z-positions were determined by scales, and the Y-position was indicated by a
precision dial gauge. The accuracy of positioning was 0-2 mm in the X- and
Z-directions, and 0-01 mm in the Y-direction.

The flow was artificially excited by the sound radiated from a 10 W loud-
speaker placed at the exit of the test-section as shown in figure 1. The maximum
available intensity of the sound was about 100 db, although a much weaker
sound was enough to induce transition in the laminar wake. The excitation
frequency was varied from 500 to 1000 c/s, excluding the resonance frequency of
the wind-tunnel, which was about 200 ¢/s. The intensity of sound was uniform
throughout the test-section, and no resonance effect was detected in the above-
mentioned frequency range.

3. General aspects of transition

At first, measurements were made in the boundary layer along the surface
of the plate. The streamwise static-pressure variation along the surface was very
small because the plates were very thin. The boundary layer was laminar every-
where on the plate, and no traces of a velocity fluctuation were found even at the
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highest wind-speed. The velocity profile was of Blasius-type, and the streamwise
development of the boundary layer was in good agreement with the well known
theoretical calculation for a flat plate. These results were quite satisfactory as
regards fixing the initial condition of the laminar two-dimensional wake.

After separation at the trailing edge, the boundary layers from both sides
coalesced and formed a wake, which still remained laminar to some distance
downstream. The velocity profile gradually changed from Blasius-type into
laminar-wake type. Velocity distributions at various X-stations are shown in
figure 2, where U, denotes the free-stream velocity. At X = 0, the distribution
is of Blasius-type. Until X = 30 or 40 mm, the distribution varies slowly, while
a sharp increase of central velocity is found from X = 40 to 60 mm. In the
figure two unusual facts are demonstrated. First the velocity at the outer
part of the wake sometimes exceeds the free-stream velocity (for example, at
X = 120 mm, ¥ = 4 to 5 mm). Secondly, the central velocity is approximately
equal at X = 60, 120 and 150 mm.

v X=0
° X=30mm
® X=40mm —
0 X=60mm
4 X=120mm
4 X=150mm

-6 —4 -2 0 2 4 6
Y (mm)

Fioure 2. Mean-velocity distribution. Plate I, U, = 10-0 m/sec.

In order to illustrate the streamwise variation of velocity distribution more
clearly, the velocity U,on the centre-line is plotted against X in figure 3. Curves
for various experimental conditions show the same trend. The theoretical curve
for the laminar wake given by Goldstein (1933) is in agreement with the experi-
mental results when X is small. As X is increased, the experimental curves
deviate from Goldstein’s result, reach maxima, decrease and again increase
gradually. The point of deviation from the theoretical curve may be called the
‘transition point’. It must be kept in mind, however, that the transition never
takes place at a point and, moreover, that the definition of transition itself is
arbitrary. A more detailed account of the velocity distribution in the transition
region will be given in the following paragraphs.

At X = 5 to 30 mm, depending on experimental conditions, there appears a
velocity fluctuation whose wave-form is regular and sinusoidal. By careful
investigation it was confirmed that the observed sinusoidal fluctuation was not
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the result of either mechanical vibrations of the hot-wire or of acoustical
resonance in the wind-tunnel. The frequency of fluctuation was the same
throughout the whole region in which the wave-form was sinusoidal. The
amplitude increased downstream until the wave-form was distorted into an
irregular pattern. Since similar sinusoidal fluctuations have been already found
in separated layers (Sato 1956, 19595) and jets (Wehrmann & Wille 1958; Sato
1959a), the existence of sinusoidal fluctuations in the wake is not surprising.
It has also been pointed out that the frequency of such fluctuations is propor-
tional to the $ power of the flow velocity according to dimensional reasoning
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FicUrE 3. Streamwise variation of mean velocity U, on the centre-line
under various experimental conditions.

(Sato 1956). The logarithmic plot of frequency in the wake verified the same
power law, as is shown in figure 4. The difference in frequency for three different
plates was due to the difference in the thickness of the trailing edge. For a
thick trailing edge, such as on Plate III, the thickness of the wake is com-
paratively large, and therefore the frequency of fluctuation is lower.

The development of the velocity fluctuations is illustrated in figures 5 and 6,
which show results obtained with slight artificial excitation at the ‘natural’
frequency (i.e. the frequency of the sinusoidal fluctuations observed in the
natural transition). Since the excitation was very slight, it had little effect on
the transition process. On the other hand, the excitation improved the repro-
ducibility of the flow field, and it was also used as a phase standard in the
measurement of the phase relation of the velocity fluctuations. A detailed
discussion concerning the interrelation between natural and excited transition
is given in § 7. The wave-form of the u-fluctuation (figure 5) shows a gradual
development from sinusoidal into irregular patterns. No turbulent bursts or
momentary breakdowns have been observed. This type of transition is in
contrast to that of a boundary layer on a solid wall, and is in accordance with
transitions in separated layers and jets. Figure 6 is a map of fluctuation patterns
at various X- and Y-positions. The sinusoidal fluctuation was observed from
X = 20 to about 400 mm. Near the centre-line the second-harmonic component
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prevailed as shown in figure 5. The irregular fluctuation first appeared near the
centre-line and spread, as X was increased, until about X = 400 mm, where
the whole wake was covered by irregular fluctuations.

It is worth while to note that at low Reynolds numbers the velocity fluctuation
decays by viscous dissipation before the wave-form becomes irregular. In this
case, no turbulent region exists in the wake even though the intensity of sinu-
soidal fluctuation may be considerable. This is another sharp contrast to the
transition of a boundary layer on a solid wall, in which the continuous energy
supply due to Reynolds stresses and velocity gradient is maintained. In the low
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Fioure 4. Frequency of natural sinusoidal fluctuations plotted
against, free-stream velocity U,,.

Reynolds number wake, the velocity gradient as well as the Reynolds stresses
becomes progressively smaller downstream, and the viscous dissipation becomes
pronounced. At higher Reynolds number, the wave-form of the fluctuations
becomes irregular before it dies out, but it is still doubtful whether the wake
becomes ‘fully turbulent’ or not. Moreover, even when the central part of the
wake becomes turbulent, the regular fluctuation can persist in the outer part, as
shown in figure 6. In these cases the definition of transition is vague. If the
existence of a fully-turbulent region is a prerequisite of transition, there occurs
no transition in the above-mentioned cases. Nevertheless, a high-level regular
fluctuation exists in the wake and the mean-velocity distribution is different
from that of laminar wake. We might call the region which is neither laminar nor
turbulent the ‘transition region’. Inso far as we use the term ‘transition’ in this
sense, the transition point might be the end point of the laminar region and not
the beginning point of turbulent region.

The intensity of the wu-fluctuations, with Plate I and U, = 10-0 m/sec, is
plotted in figure 7. When X was small, the distribution was almost similar, and
positions of peak values approximately coincided with positions of maximum
gradient in the mean-velocity distribution. As X was increased, the intensity
increased until about X = 60 mm and then decreased. Distributions from
X = 60 to 150 mm have maxima on the centre-line. This is due to the increase
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of the second-harmonic component, which is shown in figures 5 and 6. The
intensity of fluctuation in the present experiment was rather small compared
with that in the wake behind a cylinder. This fact might be explained by the
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Figure 5. Oscillographic records of u-fluctuations in wake. Plate I, U, = 10-0 m/sec.
Time goes from left to right and time interval between dots is 0-01 sec.
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F1cURE 6. Map of fluctuation patterns. Plate I, U, = 10-0 m/sec.

disturbance at the trailing edge of a flat plate being smaller than that behind a
cylinder.

After these investigations were made on the velocity fluctuation in the
transition region, we found it convenient to consider a division into three sub-
regions, i.e. the linear region, the non-linear region, and the three-dimensional
region, which are characterized by the pattern of fluctuations.

1. Linear region. In this region were observed two-dimensional sinusoidal
velocity fluctuations which were amplified exponentially downstream. Referring
to the previous investigations on free boundary layers (Sato 1959a, b), it is
expected that these sinusoidal fluctuations may be described by the linearized
theory. This region ends at the X-station where the amplitude of fluctuation
reaches the ‘linearity limit’: in other words, where the law of amplification
deviates from being exponential. The mean-velocity distribution in this region
is in agreement with Goldstein’s theoretical result.

2. Non-linear region. As aresult of amplification of the sinusoidal fluctuations,
second and higher harmonics are found in the wave-form, as shown in figure 5.
Two-dimensionality is still maintained, that is, w? is small compared with %2
and #? and the phase difference of the velocity fluctuations in the Z-direction is
small. The variation of mean velocity is remarkable in this region, being the
result of intense energy supply from the mean flow to the velocity fluctuations.

3. Three-dimensional region. Further downstream the wvelocity fluctuation
becomes three-dimensional, while some periodicity still persists. The wave-form
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is irregular in the central part and is sinusoidal at the outer part of the wake.
The turbulent region starts where the remaining regularity diminishes.

In the following paragraphs the mechanism of transition will be made clearer
by describing in detail these three regions.
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Ficore 7. Distribution of intensity of w-fluctuations. Plate I, U, = 10-0 m/sec.
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4. The linear region

As shown in the previous paragraph, sinusoidal fluctuations are found in the
transition region of the wake. They are weak at first, grow as the distance down-
stream is increased, and finally develop into irregular fluctuations still further
downstream. The nature of the sinusoidal fluctuations has been clarified by both
experimental and theoretical investigations.

4.1. Ezperimental results

Experiments on sinusoidal fluctuations have been made in two cases, one for
natural transition and the other for transition caused by the external artificial
disturbance. The latter is important for the experimental verification of
linearized theory, which in turn is useful for clarifying the mechanism of the
linear region in natural transition. Since natural transition results from the
development of small unknown and uncontrollable disturbances, there is no
essential difference between the natural and excited transition except the nature
of the original disturbances. However, before detailed measurements are made
with artificial excitations, it should be ascertained that the flow field is not
changed too much by them. If the intensity of the artificial disturbance is too
high, non-linear effects set in at X-stations that would lie in the linear region of
natural transition. On the other hand, if the incoming sound is too weak, the
induced fluctuation is masked by natural fluctuations, and in this case accurate
measurements are difficult. The proper level of exciting sound was carefully
decided as a compromise between these two considerations.
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Experiments were carried out using Plate I at U, = 10-0 m/sec. The frequency
of natural fluctuations in this case was around 730 ¢/s. The frequency range of
the artificial excitation was from 480 to 850 ¢/s. Outside this range the observed
fluctuation was hardly affected by the sound.

The phase of the sinusoidal fluctuations was not constant in the X-direction,
that is, the fluctuation was in fact a travelling wave. The propagation velocity
was measured by moving a hot-wire anemometer in the X-direction. Since the
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Freure 8. Propagation velocity of sinusoidal waves induced by artificial excitation.
Plate I, U, = 10-0 m/sec.

variation of phase in the Y-direction was remarkably large near the centre-line,
as shown later, the phase difference in the X-direction had to be determined at
large Y. Results for various frequencies of excitation are shown in figure 8, in
which the propagation velocity c,, expressed as a fraction of U, is plotted
against X. The value of ¢, increases as X is increased, reaches a maximum at
about X = 60 to 70 mm, and settles at about 0-9 for larger X. It isinteresting to
note that the variation of ¢, in the X-direction is similar to that of U,. Detailed
discussion of the values of ¢, is found in §4.3.

The increase in amplitude of the spectral components in the X-direction is
illustrated in figure 9, in which (ﬁﬁ)?nax is the maximum value of the Y-distribu-
tion, of root-mean-square intensity of the spectral component at each X-station
in the presence of excitation, whose frequency was as indicated. The value was
obtained by adjusting the central frequency of a band-pass filter to be exactly
equal to the frequency of the sound excitation, and then traversing the hot-wire
in the Y-direction. Since (ﬁ})?nax is plotted on an arbitrary scale, comparison
between values at different frequencies would be meaningless, although the
relative values for the same frequency are correctly expressed. Each spectral
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component was amplified exponentially at small X and deviated from the
exponential form at X = 30 to 35 mm due to non-linear effects. From the
gradient of each curve the rate of amplification in the X-direction is calculated.
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Ficure 9. Growth of spectral components. Plate I, U, = 10:0 m/sec.

Distributions in the Y-direction of amplitude and phase of natural sinusoidal
fluctuations are shown in figure 10. The amplitude distribution has two peaks at
about ¥ = + 1 mm, and becomes nearly zero on the centre-line. A change in
phase is observed at —3 mm < Y < 3 mm. This is the reason why the variation
of phase in the X-direction had to be measured at ¥ = 4 or 5 mm. Although a
phase shift of about 70 degrees existed between Y = —1 and —5 mm, the
phase difference at any two symmetrical points with respect to the centre-
line was always approximately 180 degrees. These results are to be compared
presently with the linearized theory.

Figure 11 shows distributions of amplitude and phase of the second-harmonic
component (1460 ¢/s) which is found predominantly near the centre-line, as
described before. The amplitude is a maximum at ¥ = 0, and the phase distri-
bution shows that this component is symmetrical with respect to the centre-
line. For the generation of the harmonic component the non-linear effect might
be responsible. A full discussion of this point is given in the following sections.

4.2, Theoretical considerations

A theoretical investigation of the stability of wakes to small disturbances has
been carried out by Hollingdale (1940) and McKoen (1956). Their work is
restricted to the case of neutrally stable disturbances and, moreover, their
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methods of approximation are rather crude. Therefore, in order to compare the
foregoing experimental results with theory, calculations extending to the non-
neutral case have been made with improved accuracy. Only the case of infinite
Reynolds namber has been considered.
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Ficure 10. Amplitude and phase distributions of fundamental component. Plate I,
U, = 10-0 m/sec, X = 40 mm.
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Ficure 11. Amplitude and phase distributions of second-harmonic component.
Plate I, U, = 10-0 m/sec, X = 40 mm.

We follow the procedure of conventional linearized stability calculations. The
basic flow is assumed to be two-dimensional and a function of y only, and lateral
disturbance velocities are neglected. The disturbance velocities u and v are
assumed to be functions of », ¥ and time ¢{. Quantities in the equations of
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motion and continuity are made non-dimensional by taking as units of velocity
and length the free-stream velocity U, and the half-breadth b of the mean-
velocity distribution. If X, Y, Z and T are the dimensional coordinates and
time, the corresponding dimensionless quantities are written x = X/b,y = Y/b,
z = Zlband t = TU,/b.

We define a stream-function i such that the velocity perturbations are given by

R 4

S VT T w

and we assume that 4 and v are small enough to justify linearization of the
equations of motion. We further assume that the Reynolds number is large
enough for the viscous terms in the equations of motion to be neglected. (The
justification for this is based on the fact that the stability characteristics of free
boundary layers become insensitive to viscous effects when the Reynolds number
is fairly high.) Then, assuming ¥ to take the form

¥ = P(y) exp [ia(x —ct)], (1)

in which « is the wave-number and ¢ = ¢, +1c;, where ¢, is the propagation
velocity and c; a measure of the rate of amplification of the disturbance, we find
that ¢ satisfies the equation

(g -c) @ -a0- 38 = o @)

which is the ‘inviscid’ form of the well-known Orr-Sommerfeld equation.
The boundary conditions are

$(0) =1, ¢'(0) = 0,}
¢'(£oo)+ag(+) =0,
and the mean velocity distribution is assumed to be

- — 2
A A exp (—ay?),

in which a is taken as 0-69315 so as to make (U,— U)/(U,-U,) = $aty = + 1.
The validity of this expression is indicated in figure 13. Since, in a wake, sym-
metrical disturbances are more stable than antisymmetrical ones, calculations
have been made only for the latter.

In order to find a set of eigenvalues which satisfies the boundary conditions,
numerical integrations have been repeated by a high-speed electronic computer.
The computed results for the eigenvalues a and ¢, taking (U, —U,)/U, = 0-692,
are shown in figure 12.

Before we compare these theoretical results with experiment, we have to
make a transformation of time axis and X-axis according to the relation z = ¢,¢,
since the flow in a wind-tunnel is stationary and the disturbance is amplified as
it travels in the X-direction. Therefore the spatial rate of amplification ac,/c,
must be used instead of ac; for the comparison with experimental results.
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4.3. Comparison of experimental results with linearized theory

A non-dimensional plot of the velocity defect in the linear region of the wake is
shown in figure 13. The theoretical distribution for a fully developed laminar
wake is in the form exp (—ay?), which is indicated by a solid line. The velocity
distribution at X = 30 mm according to the calculation by Goldstein (1933) is
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Figure 13. Non-dimensional mean-velocity distribution in linear region.

as shown by a broken line. The two theoretical curves are very close, and the
experimental data are in good agreement with these curves. Since the distribu-
tion given by the broken line has no simple analytical expression, the exponential
distribution is preferable as a basic flow for the calculation of disturbance
properties.

The non-dimensional frequency ac, of the observed natural fluctuations is
plotted against Reynolds number in figure 14. Since the theoretical value of
ac, for neutral oscillations at infinite Reynolds number is 0-92, the frequency of
the natural fluctuations can be assumed to lie inside the unstable zone of the
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theoretical stability diagram, although the curve of neutral stability for finite
Reynolds numbers has not been derived. To the right of the figure is shown the
theoretical spatial amplification rate at infinite Reynolds number, which has
a maximum at about ¢, = 0-5. Thus it is confirmed that the frequency of the
sinusoidal fluctuations found in natural transition approximately corresponds
to the frequency of the small disturbance which receives maximum spatial
amplification according to the linearized theory.
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Ficure 14. Comparison of theoretical and experimental results. Frequency of velocity
fluctuation, ac, = 27fb/U,.

When sound waves were used as artificial excitation, it was impossible to
observe the damping of disturbances just beyond the critical condition since the
induced velocity fluctuations were not sufficiently strong. Therefore the neutral
point was determined experimentally by the method introduced in a previous
paper (Sato 19595). The ratio of the intensities of spectral components with and
without excitation is plotted against non-dimensional frequency in figure 15.
The neutral frequency is determined as the point where the ratio becomes unity.
Arrows on the abscissa indicate the theoretical values which have been obtained
by various investigators: e.g. by Hollingdale (1940) who obtained two values with
different methods of approximation, and by McKoen (1956). The present value
of ac, determined by numerical integration is the smallest among the four given
values. The experimental results obtained under four different conditions are
fairly consistent, and they agree most closely with the present theoretical
estimate.

Figure 16 shows the propagation velocity and spatial rate of amplification
which are obtained from experimental data such as figures 8 and 9. The solid
lines are theoretical results for amplified disturbances at infinite Reynolds
number. The agreement between theory and experiment is fairly good in both
¢, and ac,/c,.

Distributions of amplitude and phase in Y-direction are compared in figure 17.
Experimental points denote the root-mean-square values of spectral components
of the u-fluctuations in the natural transition, taking the maximum value as
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unity and, for the phase angle of the spectral components, taking the value at
Y = —5 mm as zero. Theoretical results are given for amplified disturbances for
which ¢(y) is complex. The amplitude function and phase angle for the u-fluctua-
tions were calculated from the real and imaginary parts of ¢'(y). As shown by a
solid line in the figure, a gradual phase shift in the y-direction exists for the
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Freure 15. Determination of frequency of neutral oscillation. Plate I. (@%)* and (i)
denote root-mean-square values of spectral components of frequency f with and without
artificial excitation respectively.

Ficure 16. Propagation velocity ¢, and spatial rate of amplification ac/c,.
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amplified disturbance, in contrast to the case of neutral disturbances. Theoretical

eigenvalues in the present case are o = 0-832, ¢, = 0-168, ¢, = 0-692, which

correspond to a disturbance with approximately the maximum spatial rate of
amplification. The agreement between theory and experiment is excellent.

Thus the experimental results on the properties of sinusoidal fluctuations in

the linear region are properly described by the linearized theory. Considering
22 Fluid Mech. 11
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the previous results on the separated layer and jet, it is now obvious that in the
transition region of a free boundary layer there exists a linear region in which
sinusoidal fluctuations grow as predicted by the theory of the Orr—Sommerfeld
equation.

S. The non-linear region

The upstream boundary of the non-linear region is the X-station where the
growth rate of velocity fluctuations deviates from being exponential. This
deviation demonstrates the role of non-linear terms in the equation of motion.
This initial point of the non-linear region might be called the ‘transition point’
since the non-linearity is an essential feature of turbulent motion. On the other
hand, the transition point defined as the end-point of laminar region in the
preceding section is determined from, for instance, the streamwise variation of
velocity on the centre-line such as is shown in figure 3. These two kinds of transi-
tion point, one defined from the velocity fluctuation and the other from the
time-mean velocity, are found experimentally to be very close. This fact has
been already pointed out in the case of separated layers and jets (Sato 1956,
19594). From the experimental results it has been confirmed that the two-
dimensionality of the fluctuations is still maintained in the non-linear region. The
downstream boundary of the non-linear region is defined as the X-station where
the fluctuations become three-dimensional so that, for instance, #2 and w2 become
comparable, With Plate I and U, = 10-0 m/sec, the extent of the non-linear
region was found to be about X = 40 to 150 mm.

5.1. Nomn-linear development of sinusoidal fluctuations

As shown in figure 5, the non-linear effect on the wave-form of the fluctuationsis
observed in the vicinity of the centre-line as an increase of low-frequency irregular
fluctuations. In the outer part of the wake the sinusoidal fluctuation persists with
the same frequency. The non-linear effect seems to be slight between X = 40
and 150 mm as far as the wave-form is concerned. However, remarkable
changes take place in the distributions of amplitude and phase of the spectral
components, as isshown in figures 18 and 19. In figure 18, the root-mean-square
values of the spectral component at the fundamental frequency are plotted on an
arbitrary scale, while the relative values at various X-stations are correctly
expressed. The distribution changes in a rather peculiar way as X is increased.
From X = 40 to 80 mm, the variation is gradual. The positions of the two
peaks move outwards, maintaining a roughly similar type of distribution. At
X = 120 and 150 mm, the distribution shows three minima, at ¥ = 0 and
Y = +2-5mm. Referring to figure 19, we see that a 180-degree phase reversal
takes place at these three points. At each X-station, 180-degree reversal is
observed at ¥ = 0, except at X = 80 mm which is in some sense a dividing line.’
Now it seems possible to classify the non-linear region into two parts. The
upstream part more or less resembles the linear region, although the exponential
amplification of fluctuations is no longer observed. In the downstream part, the
distribution functions of amplitude and phase are completely different from
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those in the upstream part. It is obvious that in the non-linear region a new
equilibrium is established at about X = 100 mm.

The next step of the investigation is to clarify the nature of the harmonic
components in the non-linear region. An increase of harmonic components is
expected as a result of non-linear interaction. In figure 20, the distribution of
second harmonics is shown. While a remarkable increase in (u3,)? takes place
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Fieure 18. Amplitude distribution of fundamental component in non-linear region.
The ordinate scale is arbitrary.
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Ficure 19. Phase distribution of fundamental component in non-linear region.
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from X = 40 to 60 mm, it decreases downstream from X = 60 mm. This
is a curious situation since the fundamental component still increases or
only slightly decreases from X = 60 to 100 mm. The ratio of harmonic com-
ponent to fundamental component becomes a maximum at X = 60 mm and
decreases as X is increased further. Although non-linear effects might always be
expected to increase the harmonic content, we here observe a contrary result.
The distribution function of the second-harmonic component (u3,)} in the
Y-direction shows a reduction in the extent of the distribution from X = 60
to 120 mm. This fact is also unusual. A more detailed discussion of figure 20
is hardly justified, however, since the accuracy of measurement of the
harmonic components was not high, owing to the unavoidable non-linearity of
the characteristics of the hot-wire anemometer itself. The necessary correction
for this non-linearity reached 50%, of the value of (u%,)}, while the harmonic
component was very small compared with the fundamental component.
22.2
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Another quantity which characterizes the non-linear distortion of sinusoidal
fluctuations is (u3)5. When the wave-form remains symmetrical with respect to
the zero line, the value of (%3)? is zero. Thus (#®)}, which was determined by the
use of a cubing unit, is a measure of asymmetry of the wave-form. Due to the
inevitable non-linearity of the hot-wire, as mentioned before, the measured value
of (u%)% was not zero even for sinusoidal fluctuations when the amplitude was
fairly large. Moreover, the wave-form distortion was usually accompanied by
slow irregular velocity fluctuation. For these reasons, a high accuracy was not
expected in the measurement of (#3)}. Figure 21 is the result obtained in the
non-linear region. At X = 60 mm, the distribution is different from those at
X = 80 and 120 mm, which again suggests the peculiar character of the region
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Fraure 20. Amplitude distribution of second harmonics in the non-linear region.
The ordinate scale is arbitrary.

X = 80 to 150 mm. It is worth while to note that in the distribution at
X = 120 mm, the zeros of (%3)? at about ¥ = + 2 mm coincide approximately
with the phase-reversal points for the fundamental component. Outside
Y = +2 mm, the second-harmonic component is very small, so that non-
linearity is manifested as the asymmetry of the wave-form. Inside Y = +2 mm,
(u3;)* is nearly constant, whereas (@)} changes sign. From these facts it is
expected that the generation of harmonics and asymmetrical distortion of wave-
form have no simple relation, although both are undoubtedly results of non-
linear interactions.

In order to clarify the situation at X = 120 mm, the non-dimensionalized
mean-velocity distribution (figure 22) may be closely examined. We find two
facts. Omne is the over-shoot of velocity between y = 1:6 and 2-5, and the
other is the flat distribution near the centre-line. The distribution at X = 40 mm
is added for comparison. The peculiarity of the distribution at X = 120 mm is
clearly seen. ,
5.2. Vortex model
The curious features of the flow field in the region X = 40 to 150 mm are
summarized as follows:

1. Before the experiment was made, it seemed probable that in the wake the
central velocity U, increases monotonically and approaches U, at large X. But
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at about X = 80 mm, U, becomes a maximum, begins to decrease, and reaches
a minimum at X = 120 mm before it gradually increases again.

2. The mean-velocity distribution at X = 120 mm is very different from
that at smaller or larger X. The distribution has a flat part near the centre-line,
and the velocity over-shoots the free-stream velocity at the edge of the wake.

3. The fundamental component of the velocity fluctuations at X = 120 to
150 mm becomes zero not only at ¥ = 0 but also at ¥ = 1 2 mm. The phase
reversal also takes place there.
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Frcure 21. Distribution of (%)} in non-linear region.
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Ficure 22. Non-dimensional mean-velocity distributions in linear and non-linear regions.

4. As X is increased, the second-harmonic component increases until
X = 60 mm, decreases, reaches a minimum, and increases a little again as X is
increased further. The distribution in the Y-direction shows a systematic
change over the range X = 40 to 150 mm.

These features might be explained by an analytical method taking account of
non-linear terms in the equation of motion. Since the linearized theory has had
substantial experimental verification in the linear region, the mechanism of the
non-linear region might also be clarified by an appropriate theoretical model.
Practically, however, analysis of the non-linear equations of motion is very
difficult, and no satisfactory theory has been reported so far. Thus we are
inclined to take a tentative empirical model which explains the above-men-
tioned experimental facts.

In the past, many investigators have observed the formation of vortices in
the wake of two-dimensional bodies, including a thin flat-plate (Hollingdale
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1940; Taneda 1958). It is usually accepted that the sinusoidal fluctuations in
the signal from a hot-wire anemometer corresponds to the moving vortex which
is observed visually. In order to make such a correspondence apply in the
present case, the physical properties posed on the vortex must be sufficiently
complex to explain the wave-form of the hot-wire output. The usual simple
vortex model is obviously inadequate. In order to approximate the linear
region, a single row of vortices which travels in the X-direction as shown in
figure 23 (a) is useful. The adjacent vortices rotate in opposite direction and the
radial distribution of circumferential velocity is assumed as shown. This model
roughly explains the calculated and observed distributions of amplitude and
phase of the velocity fluctuations in the linear region. The nature of the fluctua-
tions in the non-linear region is explained as follows by the development of the
single row into a double row as shown in figure 23 (b).
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Fieure 23. Vortex model. (a) Single row; (b) double row of vortices.
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In the single row, the superposition of vortices has no effect on the mean-
velocity field. On the other hand, in the double-row configuration a velocity is
induced in the negative X-direction between rows of vortices, as shown by the
arrow. This results in a decrease of U,. Furthermore, a positive velocity is
induced at the outer part of the wake. These facts explain the mean-velocity
distribution at about X = 120 mm as shown in figure 22. In the double row of
vortices, the phase inversion of the fundamental component takes place not only
on the centre-line but on lines connecting centres of vertices in each row if the
lateral spacing is large. The generation of second harmonics in the vicinity of
the centre-line is also easily understood. Typical wave-forms of velocity fluctua-
tions as expected from the vortex model are shown at the bottom of figure 23,
depending on the location of hot-wire. These are in accord with the experimental
observations. The change of sign of (%3)} on the line connecting centres of
vortices is understood from these wave-forms. Thus the process in the non-
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linear region is explained by the development of the single row into a double
row of vortices, and if once the double row is established, the configuration is
stable and remains unchanged until three-dimensional deformation begins.

It is worth while to calculate an important geometrical parameter of a double
row of vortices, that is, the ratio of lateral to longitudinal spacings. The value is
0-281 in von Karmén’s analysis, whereas in the present experiment it is about
0-39. This comparatively large lateral spacing allows the phase inversion of the
fundamental component on the lines connecting centres of vortices. This fact is
in contrast to the case of the wake of a circular cylinder, in which the phase
reversal is found only at ¥ = 0 (Roshko 1954).

5.3. Interaction between spectral components

In the linear region, spectral components of different frequencies are damped or
amplified independently. In the non-linear region, however, two spectral com-
ponents may interact with each other through the non-linear terms in the
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Ficure 24. Variation of intensity of natural and excited spectral components in
the non-linear region. X = 120 mm.

equations of motion. This interaction was experimentally investigated by
superposing an artificial disturbance, that is, sound from the loudspeaker
at a frequency other than that of the natural fluctuations.

At first, as the result of non-linear interaction, we expected the generation of
spectral components of frequency f, + f;, where f, and f; denote the frequencies
of the natural and artificial disturbances respectively. However, no peaks were
observed experimentally at f, + f; in the energy spectrum of the u-fluctuations.
By varying the intensity of sound from the loudspeaker, the wave-form and
intensity of the velocity fluctuations in the non-linear region have been investi-
gated. Figure 24 shows the change in the root-mean-square values of two
spectral components. The induced spectral component (u%)} (590 c/s) increases
monotonically as the input voltage to the loudspeaker is increased. On the
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other hand, the component of natural fluctuation (730 ¢/s) diminishes when the
intensity of excitation is increased. This ‘suppression effect’ is more remarkable
when f; is close to f;,. This effect means, in other words, the supply of energy from
the component at f, to that at f;. The detailed mechanism of the energy exchange
is not yet known.
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FiaurE 25. Oscillographic records of u-fluctuations in the non-linear region at X = 120 mm
and Y = b mm. Excitation 590 c/s. Upper trace is the output from the hot-wire anemo-
meter, and lower trace is the input to the loudspeaker. Time goes from left to right and
the time interval between dots is 0-01 sec.

The wave-form in the presence of artificial excitation is shown in figure 25.
Without artificial excitation the frequency of fluctuation is about 730 ¢fs (a).
When the incoming sound is weak, the component of f; appears in a small
fraction of time, while the f; component prevails (b). By increasing the intensity
of sound, the probability of finding the f; component increases (c), and with the
maximum intensity of sound the f, component is hardly found (d). From these
records, it is obvious that the probability of finding induced fluctuation is a
function of intensity of the artificial disturbance. No periodicity was found in
the occasional change of the frequency of fluctuation.

6. Three-dimensional region

In the linear and non-linear regions, velocity fluctuations are approximately
two-dimensional. The distortion of two-dimensional waves—in other words, the
three-dimensional deformation of the row of vortices—takes place in the final
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subregion of transition, the three-dimensional region, in which regularities in the
fluctuations gradually diminish until the fully turbulent wake is formed. If the
Reynolds number of flow is small, the fluctuation energy decays by viscous
dissipation before the development into turbulence is completed. In this case,
there is no turbulent region and the three-dimensional region is also hardly
observed.

With the use of Plate I at U, = 10-0 m/sec, the physical process which takes
place in the three-dimensional region was as follows.

The double row of vortices formed in the non-linear region became unstable
at about X = 150 mm. As a first sign of the deformation of the vortices,
irregular wave-forms were observed near the centre-line of the wake while the
fluctuation was still sinusoidal in the outer part. As X was increased, the region
of irregular fluctuations extended into the outer part until the whole breadth of
the wake was covered. At the same time, the phase relation of the sinusoidal
fluctuations with respect to the Z-direction became irregular, and w-fluctuations
became comparable in magnitude with u-fluctuation. The turbulent wake was
thus established at about X = 400 mm, although the intensity of fluctuation was
much less there compared with that in the non-linear region. No instantaneous
turbulent bursts have been observed so far in this region. The change of wave-
form was gradual.

Before we go into the quantitative discussion, we may suitably introduce some
physical quantities to characterize the three-dimensionality. From the con-
sideration that the difference in mean-velocity distribution at various Z-stations
is small, three quantities concerning the velocity fluctuation have been used.
They are the relative magnitude of (@%)} and (w?)}, the phase relation in the
Z-direction, and the distribution of spectral components at various Z-stations.

The ratio (#?)}/(u2)? is plotted against Y in figure 26. At X = 150 mm, u-
and w-fluctuations are nearly the same in magnitude, or (w?)? is even greater in
the region —2mm < ¥ < 2 mm, and outside this region (%?)! is very small
compared with (%2)}. Therefore, the irregular fluctuation observed in the central
region is three-dimensional, but the sinusoidal fluctuation in the outer part of
the wake is still two-dimensional. At X = 300 mm, the ratio is close to unity over
the whole breadth of the wake. This fact resulted from the faster decay of (u?)}
rather than the growth of (w?)} in the three-dimensional region. The value of
(w?)t/(u2)} at X = 300 mm is close to that in the fully developed wake behind
a cylinder.

The straightness of the front of the sinusoidal wave is expressed by the phase
relation in the Z-direction at large Y. The experimental result is shown in
figure 27, in which the phase angle at Z = 0 is taken to be zero. At small X, the
variation in the Z-direction is small. This means that the wave is approximately
two-dimensional and propagates in the X-direction. At larger X, a phase
difference of more than 180 degrees is observed at some Z-station, while the
direction of propagation as a whole still remains in the X-direction. As mentioned
before, the wave-form at large X is irregular near the centre-line of the wake.
This means that the double row of vortices is first distorted in the region between
rows. For instance, the phase of the velocity fluctuations at X = 250 mm could
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not be determined experimentally because of the irregularity in the central part
of the wake. The phase distribution in the Z-direction at large ¥ might still be
significant, since it expresses the three-dimensional distortion in a large scale.
As shown in figure 27, the Z-station of the phase lag or advance is approximately
fixed at various X-stations. This fact might have arisen from imperfections of
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Figure 26. Distribution of (w?)}/(@?)t at X = 150 and 300 mm.
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Ficure 27. Spanwise distribution of phase of fundamental component at various
X-stations in the outer part of the wake. Arrow indicates the station where detailed
measurements were made.

the flat plate. Upon careful inspection of the plate, a slight waviness (about
0-2 mm in height) was found in the trailing edge at about Z = —40 mm. Since
all measurements in the linear and non-linear regions were made at Z = 10 mom,
as indicated by an arrow in figure 27, the experimental results described in
preceding sections were uninfluenced by disturbances produced by this waviness,
However, since the slightest spanwise irregularity can have a decisive effect on
the breakdown of the laminar boundary layer on a solid wall (Schubauer 1958;
Tani 1960), a measurement has been made on the distribution of spectral com-
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ponents at three Z-stations 4, B and C as denoted in figure 27. A and C are
stations of maximum lag and advance respectively, and B is the midway
station. The experimental results obtained at A and C are in good accordance
with those at Z = 10 mm where all systematic measurements have been made.
On the other hand, the distribution at B with X = 150 mm is somewhat
different. The 180-degree phase shift is observed only at ¥ = 0 and the maxi-
mum value of amplitude is about 1-3 times that at Z = 10 mm. The phase
configuration suggests the single-row configuration at B, although it is accom-
panied by an appreciable distortion. At X = 200 mm, the difference between
the three Z-stations is not observed any more. From the observations made so
far, the peculiar region around station B has no decisive effect on the transition
process in the whole wake. This fact is in contrast to the case of transition of the
boundary layer along a solid wall, which depends to an important extent on the
three-dimensionality in the layer.

The three-dimensional region is succeeded by the turbulent region, on which no
detailed measurements have been made in the course of the present investigation.

7. Discussion

First of all, the relation between natural and artificially excited transition
must be clarified, because in the present experiment the transition was often
initiated by sound from a loudspeaker. Generally speaking, in wind-tunnels
there are various kinds of residual disturbance such as the free-stream turbu-
lence, acoustic noise, mechanical vibration, etc., which undoubtedly have great
influence on the transition process. These residual disturbances usually change
day by day, and the reproducibility of transition pattern is sometimes very poor.
And, moreover, the magnitude and nature of these disturbances are not the
same for different wind-tunnels; therefore, experimental results on so-called
natural transition obtained at different places are usually not comparable.
We may assume that transition would take place in a similar way if levels of
residual disturbances were smaller than certain limits. But even if this assump-
tion is true, no one knows these limits, and it is probable that disturbances in
existing wind-tunnels are almost always too great.

The advantages of artificial disturbances are twofold; one is to specify the
nature and intensity of the predominant disturbance which induces the transition,
and the other is to improve the reproducibility of the transition process. When
the intensity of the artificial disturbance is considerably higher than that of
residual disturbances, the reproducibility of the transition pattern is improved
remarkably. However, if the intensity is too high, the pattern of transition is
completely changed from that of natural transition. The frequency and ampli-
tude of artificial disturbances are therefore to be determined by consideration
of these two conditions.

A sound wave is one of the simplest and most convenient forms of artificial
disturbance, since the frequency and intensity can be changed very easily.
However, the excitation by sound extends uniformly over the whole flow field,
and a point of excitation cannot be specified. Sometimes, the applicability is
restricted by acoustical resonance of the wind-tunnel. In these respects the
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vibrating ribbon (Schubauer & Skramstad 1948) is a more satisfactory measure
than sound waves. But it is difficult to apply the ribbon technique to a wake
and, moreover, the disturbance generated by a ribbon is undesirably large in
such highly unstable flows as wakes and jets. The transition might be induced
by the ribbon even when it does not vibrate, and the growth of disturbances is
completed in a small region which is not suitably large compared with the
dimensions of the ribbon. Although the excitation by sound is not localized,
its effect is greatest at the X-station where the spatial amplification of the
impressed disturbance is a maximum. As a matter of fact, the velocity ampli-
tude of the sound may be extremely small: for instance, 0-1 em/sec for sound at
80 db. Therefore, the induced velocity fluctuation is observable only when it is
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Ficure 28. Streamwise variation of various quantities in the transition region.
U, = 10-0 m/sec, Plate I. (@3)! is the maximum value at each X-station, and (u3,)t is the
value at ¥ = 0. Both are plotted on an arbitrary scale.

amplified about 100 times. Thus, it is possible to consider that the excitation is
applied at an original point of amplification. The propagation velocity, rate of
amplification and distribution function of spectral components in the linear
region were determined in our experiments by the use of sound excitation.
Wave-forms, the mean-velocity distribution and the distribution of total energy
u? were observed without sound excitation.

Some of the experimental results described in the preceding sections are sum-
marized in figure 28, which provides a general view of the mechanism of transi-
tion. The transition region is classified into three subregions, linear, non-linear
and three-dimensional. The linear region in which the sinusoidal velocity
fluctuation was amplified exponentially extended from X = 20 to 40 mm, and
this was followed by the non-linear region in which a two-dimensional double
row of vortices was established as a stable configuration. The three-dimensional
region started at about X = 150 mm and was succeeded by a turbulent region
at about X = 400 mm. This result was found with Plate I at U, = 10-0 m/sec,
the corresponding Reynolds number based on the length of plate being 2-1 x 105,
Under different experimental conditions, the relative extent of each subregion
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was, of course, different. However, the essential features of transition were
concluded to be identical. In order to obtain a better understanding of the
transition phenomenon, the mechanism of transition in other flow fields is now
to be compared with the present result.

First, the wake of a circular cylinder is considered. Many extensive investi-
gations have been carried out on the double row of vortices in the wake of the
cylinder since the pioneering work by von Karméin. Hot-wire measurements
were made by Kovasznay (1949) and Roshko (1954). Roshko has pointed out
the great difference in the flow pattern behind cylinders with different Reynolds
number. Therefore, before we make a comparative discussion, we have to
establish the correspondence of Reynolds number between the two types of
wake. It seems reasonable to compare the drags of a cylinder and flat plate in
uniform flow, which are expressed by

Dplute = 1328«/((]3/’(’:0”’
Dcylindcr = CD%,D U%d’

in which ! and d are the streamwise length of the plate and the diameter of the
cylinder respectively. The boundary layer on the plate is assumed laminar
everywhere. Since the drag is a measure of energy taken out of the flow, the
velocity defect and velocity fluctuation might well be of the same level if the
drag is equal. Thus, by putting D 1e = Deyiinger» We have

I)d = 0-38C,\ /Ry,

in which R, = U,l/v. The present experimental conditions for a plate,! = 30 cm,
U, = 10-0 m/sec, may thus correspond to d = 0-18 cm and U, = 10-0 m/sec for
a cylinder, the Reynolds number U,d/v being 1200. According to the classifica-
tion by Roshko, this Reynolds number belongs to the ‘irregular range’ in which
the periodic vortex shedding is accompanied by irregular velocity fluctuations.

In the wake of a cylinder there exists no linear region in the present sense,
that is, the sinusoidal fluctuation is of high intensity and always decays down-
stream. The mechanism of generation of vortices is different for the two types of
wake. Behind a cylinder there are two separated layers from the wall, which are
laminar at first and become turbulent before the rolling-up into vortices is
completed at Reynolds numbers below 10°. The continuity of the boundary
layer into the wake is much smoother for the case of a flat plate. Besides these
differences in the mechanism of generation, the double row of vortices in the
wake of a cylinder might correspond to that in the non-linear region of the wake
of a flat plate. Thus, in the wake-like velocity distribution, the anti-symmetrical
two-dimensional double row of vortices is a stable configuration. The three-
dimensional distortion of these vortices leads the gradual change into turbulence.

The transition of a two-dimensional jet has also been found to be characterized
by sinusoidal velocity fluctuations which grow exponentially and develop
gradually into turbulence (Sato 1959b). Observed features of the sinusoidal
fluctuations were in good agreement with predictions of linearized theory.
Generally speaking, the nature of transition of a jet is very close to that of a wake
behind a thin plate. The separated layer from a sharp edge, though it is not a
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symmetrical flow field, exhibits a similar nature of transition to jets and wakes
(Sato 1959a). Thus, in free boundary layers including wakes, jets and separated
layers, the process of transition is to a large extent similar, although in the wake
behind a cylinder there is some difference, as mentioned above.

We now compare the transition of the boundary layer along a solid wall. The
early work by Schubauer & Skramstad (1948) on the boundary layer along a
flat plate has verified the linearized theory in the linear region of transition.
Concerning the non-linear region, we can point out many essential differences
between free and ‘fixed’ boundary layers. Modern investigations on the
boundary layer along a flat plate indicate the importance of three-dimensional
distortion of two-dimensional waves in the process of transition (Hama, Long &
Hegarty 1957; Schubauer 1958; Tani 1960). The pre-existing three-dimen-
sionality in the laminar layer—for instance, the spanwise variation of layer
thickness—is a decisive factor in the distortion of two-dimensional waves and,
therefore, in the onset of turbulence. Although the role of three-dimensionality
in the transition of free boundary layers is not yet fully understood, it might be
much less significant than in the case of fixed boundary layers. One of the most
important features in the transition of a fixed boundary layer is the generation of
turbulent bursts or, in other words, sudden breakdowns of laminar flow. It is
now established that the breakdown is closely related to the complicated three-
dimensional distortion of originally two-dimensional waves. The development of
a small patch of turbulence has been made clear experimentally (Schubauer &
Klebanoff 1956). These features of the non-linear region have no counterparts in
the transition of free layers. Thus it is concluded that the linear development of
sinusoidal fluctuations is verified in both free and fixed boundary layers, whereas
the mechanism in the non-linear region is completely different.

The formation of a double row of vortices in the wake is a peculiar fact. As
mentioned in a previous paper (Sato 19595), there might be some mechanism
which suppresses the deformation of vortices due to a non-linear effect. The
vortex theory, such as that originated by von Karmé4n and modified by many other
investigators, might explain some of the observed results. However, it is far from
a complete explanation since it fails to describe the continuity from the linear
region, or to predict wavelength, etec., in relation to the mean-velocity distribu-
tion of the wake. Thus we are inclined to think that a stability calculated for
disturbances of finite amplitude is required. It is expected that the observed
formation of a double row of vortices is the result of a selective action which is
closely related to the initial conditions and mean-velocity distribution.

The three-dimensional distortion of two-dimensional vortices is initiated by
pre-existing three-dimensionality in the flow. Recently, Benney & Lin (1960)
have developed a non-linear theory and calculated second-order terms assuming
a periodic variation in the Z-direction for the primary fluctuations. From the
present measurements of the distributions of %% and w?in the Y-and Z-directions,
no definite conclusion was reached concerning the validity of the theory,
because the calculation was made for a different type of flow field and the
assumed distribution of primary fluctuation was not realized in the present
experiment.
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In the wake of a thin plate, the process of three-dimensional distortion is
gradual in contrast to the sudden breakdown in fixed boundary layers. In
boundary layers along solid walls, there is a great difference in the equilibrium
mean-velocity distribution of laminar and turbulent layers. This implies a more
complicated variation of energy flow in the process of transition of fixed layers
than that of free layers, in which thickening of the layer takes place without
appreciable change in the shape of the mean-velocity distribution. The three-
dimensional region of free layers is to be investigated in the future in more
detail by determining the energy balance in the region.

8. Conclusion

The experimental and theoretical investigation of the wake developed behind a
flat plate placed parallel to the uniform flow indicated the following conclusions.

1. The observed mean-velocity distribution in the laminar region of a wake
is in coincidence with Goldstein’s calculation.

2. At a certain Reynolds number, the transition region is classified into three
subregions: (1) the linear region, (2) the non-linear region, and (3) the three-
dimensional region.

3. The frequency of sinusoidal velocity fluctuations found in natural transition
is proportional to the § power of free-stream velocity. The fluctuations corre-
spond to the disturbance with maximum amplification according to the linearized
stability theory.

4. The sinusoidal velocity fluctuations induced by artificial excitation are
amplified exponentially in the linear region when the frequency of excitation
lies inside the unstable zone of the stability diagram. The observed propagation
velocity, rate of amplification and amplitude function of fluctuations at various
frequencies are in good agreement with the predictions of linearized theory.

5. Vortex models, a single row of vortices in the linear region and an anti-
symmetrical double row in the non-linear region, are useful for explaining many
of the experimental results. The double row of vortices is similar to that found
in the wake of a circular cylinder.

6. In the non-linear region, an increase of intensity of the artificial excitation
results not only in the increase of induced velocity fluctuation of identical
frequency, but also in a decrease in the amplitude of the natural velocity
fluctuations. This ‘suppression effect’ is remarkable when the frequency of
the artificial disturbance is close to that of natural fluctuation.

7. In the three-dimensional region, the double row of vortices, which is two-
dimensional in the non-linear region, is subject to three-dimensional distortion.
The velocity fluctuation gradually develops into turbulence without being
accompanied by sudden breakdown or turbulent bursts.
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whole course of the investigation with members of the Boundary Layer Research
Group in Japan, which is directed by Professor Itiro Tani. Thanks are extended
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352 Hiroshi Sato and Kyoichi Kuriki

REFERENCES

BenxEY, D. J. & L1N, C. C. 1960 Phys. Fluids, 3, 656.
GoOLDSTEIN, S. 1933 Proc. Roy. Soc. A, 142, 545.

Hama, F. R., Lowg, J. D. & HEgaRrTY, J. C. 1957 J. Appl. Phys. 28, 388.
HoLLINGDALE, S. H. 1940 Phil. Mag. (7) 29, 209.

KovAsznay, L. 8. G. 1949 Proc. Roy. Soc. A, 198, 174,
LAvUFER, J. & VREBALOVICH, T. 1960 J. Fluid Mech. 9, 257.
McKoEN, C. H. 1956 Aero. Res. Coun., Lond., Rep. no. 303.
Rosuxko, A. 1954 Nat. Adv. Comm. Aero., Wash., Rep. no. 1191,
SaTo, H. 1956 J. Phys. Soc. Japan, 11, 702.

Saro, H. 1959a J. Phys. Soc. Japan, 14, 1797.

Sato, H. 1959b J. Fluid Mech. 7, 53.

Sato, H., KoBasHr, Y., IucHt, M., YaAmamoTo, K. & ONDA, Y. 1954 Rep. Inst. Sci. Tech.,
Unav. Tokyo, 8, 271.

SCHUBAUER, G. B. 1958 Proc. Boundary Layer Symposium, Freiburg, p. 85.
SCHUBAUER, G. B. & KLEBANOFF, P. 8. 1956 Nat. Adv. Comm. Aero., Wash., Rep. no. 1289.
SCHUBAUER, G. B. & SxkraMsTaD, H. K. 1948 Nat. Adv. Comm. Aero., Wash., Rep. no. 909.
TANEDA, S. 1958 J. Phys. Soc. Japan, 13, 418.

Tant, I. 1960 Paperpresentedat 2nd Int. Congr. Aero. Sci. Zurich (Switzerland), September.
WERRMANN, O. & WiLLE, R. 1958 Proc. Boundary Layer Symposium, Freiburg, p. 387.



